เทสลารอสเตอร์ เป็นแนวคิดรถสปอร์ตสี่ที่นั่งพลังงานไฟฟ้าทั้งคันที่ขับเคลื่อนด้วยพลังงานแบตเตอรี่ไฟฟ้าที่กำลังจะมาถึงซึ่งผลิตโดย Tesla, Inc. เทสลาได้กล่าวว่าจะมีความสามารถเร่ง 0 ถึง 60 ไมล์ต่อชั่วโมง (0 ถึง 97 กม./ชม.) ใน 1.9 วินาที ซึ่งเร็วกว่ารถยนต์ที่ผลิตตามกฎหมายบนท้องถนนทุกรุ่นจนถึงปัจจุบันที่ประกาศในเดือนพฤศจิกายน พ.ศ. 2560 รอสเตอร์เป็นรุ่นต่อจากรถโปรดักชั่นคันแรกของ Tesla ซึ่งเป็น Roadster ปี 2008ตัวสับเปลี่ยนเป็นกลไกที่ใช้ในการสลับอินพุทของมอเตอร์ AC และ DC เพื่อให้กระแสที่ไหลในขดลวดในโรเตอร์ไหลทางเดียวตลอดเวลาในระหว่างการหมุน ประกอบด้วยวงแหวนลื่นชิ้นเล็กๆแยกจากกันด้วยฉนวน วงแหวนนี้ยังแยกจากเพลาของมอเตอร์ด้วยฉนวนอีกด้วย วงแหวนแต่ละคู่ที่อยู่ตรงข้ามกันจะเป็นขดลวดหนึ่งชุด กระแสที่จ่ายให้มัดข้าวต้ม หรือที่เรียกว่า armature ของมอเตอร์จะถูกส่งผ่านแปรงถ่านสองตัวที่แตะอยู่กับตัวสับเปลี่ยนแต่ละด้านที่กำลังหมุนอยู่ ซึ่งจะทำให้กระแสจากแหล่งจ่ายไฟ AC ที่ไหลกลับทาง ไหลในขดลวดทิศทางเดียวในขณะที่โรเตอร์หมุนจากขั้วหนึ่งไปอีกขั้วหนึ่ง ในกรณีที่ไม่มีกระแสแหล่งจ่ายไม่กลับทางมอเตอร์จะ เบรกหยุดอยู่กับที่ ในแง่ของความก้าวหน้าที่สำคัญในช่วงไม่กี่ทศวรรษที่ผ่านมา อันเนื่องมาจากเทคโนโลยีที่ดีขึ้นในการควบคุมอิเล็กทรอนิกส์ มอเตอร์เหนี่ยวนำที่ควบคุมโดยไม่ใช้เซ็นเซอร์ และมอเตอร์ที่มีสนามแม่เหล็กถาวร มอเตอร์ที่มีตัวสับเปลี่ยนแบบกลไกไฟฟ้า กำลังถูกแทนที่เพิ่มขึ้นด้วยมอเตอร์เหนี่ยวนำที่ใช้ตัวสับเปลี่ยนภายนอกและมอเตอร์แบบแม่เหล็กถาวร แหล่งจ่ายไฟมอเตอร์
แหล่งจ่ายไฟของมอเตอร์ DC มักจะผ่านทางตัวสับเปลี่ยนตามที่อธิบายไว้ข้างต้น ต้วสับเปลี่ยนของมอเตอร์ AC อาจเป็นได้ทั้งแบบแหวนสลิป หรือแบบภายนอกอย่างใดอย่างหนึ่ง การควบคุมอาจเป็นแบบความเร็วคงที่ หรือแบบความเร็วเปลี่ยนแปลงได้ และอาจเป็นแบบ synchronous หรือแบบ asynchronous ก็ได้ มอเตอร์แบบยูนิเวอร์แซลสามารถทำงานทั้ง AC หรือ DC อย่างใดอย่างหนึ่ง
การควบคุมมอเตอร์
มอเตอร์ AC แบบความเร็วคงที่จะถูกควบคุมความเร็วด้วยตัวสตาร์ทแบบ direct-on-line หรือ soft-start
มอเตอร์ AC แบบความเร็วแปรได้จะใช้ตัวปรับความเร็วที่เป็นพาวเวอร์อินเวอร์เตอร์ หรือตัวปรับแบบใช้ความถี่หรือใช้เทคโนโลยีตัวสับเปลี่ยนอิเล็กทรอนิกส์หลายแบบแตกต่างกัน
คำว่าตัวสับเปลี่ยนอิเล็กทรอนิกส์มักจะเกี่ยวข้องกับการใช้งานของตัวสับเปลี่ยนที่ไม่ใช้แปรงถ่านในมอเตอร์ไฟฟ้ากระแสตรง และใน en:switched reluctance motor (มอเตอร์ที่ขดลวดอยู่บนสเตเตอร์)
ประเภท
มอเตอร์ไฟฟ้าทำงานบนหลักการทางกายภาพที่แตกต่างกันสามประการคือ แม่เหล็ก, ไฟฟ้าสถิต และ piezoelectric (ไฟฟ้าที่เกิดจากการกดดันทางกลไกที่มีต่อผลึกที่ไม่นำไฟฟ้า) โดยที่พบมากที่สุดคือ แม่เหล็ก
ในมอเตอร์แม่เหล็ก สนามแม่เหล็กเกิดขึ้นทั้งในโรเตอร์และสเตเตอร์ สิ่งที่เกิดขึ้นระหว่างสองสนามนี้คือแรงบิดที่เพลาของมอเตอร์ สนามแม่เหล็กอันใดอันหนึ่งหรือทั้งสองสนามจะต้องถูกทำให้เปลี่ยนแปลงไปกับการหมุนของโรเตอร์ ซึ่งจะทำได้โดยการสลับขั้วเปิดและปิดในเวลาที่ถูกต้องหรือการเปลี่ยนแปลงความเข้มของขั้วแม่เหล็ก
ประเภทหลักของมอเตอร์ แบ่งเป็น มอเตอร์กระแสตรง และ มอเตอร์กระแสสลับ มอเตอร์กระแสตรงกำลังจะถูกแทนที่ด้วยมอเตอร์กระแสสลับ
มอเตอร์ไฟฟ้ากระแสสลับมีทั้งแบบ asynchronous และ synchronous.
เมื่อเริ่มทำงาน ซิงโครนัสมอเตอร์ต้องหมุนไปพร้อมกับการเคลื่อนที่ของสนามแม่เหล็กในทุกสภาวะของแรงบิดปกติ
ในซิงโครนัสมอเตอร์ สนามแม่เหล็กจะต้องเกิดขึ้นโดยวิธีอื่นนอกเหนือจากการเหนี่ยวนำ เช่นจากขดลวดที่แยกต่างหากหรือจากแม่เหล็กถาวร
มันเป็นเรื่องปกติที่จะแยกแยะความแตกต่างของความสามารถของพลังงานที่ออกมาของมอเตอร์กับเกณฑ์แรงม้าที่มีค่าเป็นหนึ่ง เพื่อที่ว่าแรงม้าเลขจำนวนเต็มหมายถึงมอเตอร์มีแรงม้าเท่ากับ หรือสูงกว่าเกณฑ์ และ แรงม้าที่เป็นเศษส่วน หรือ FHP หมายถึง มอเตอร์มีแรงม้าต่ำกว่าเกณฑ์
มอเตอร์ DC แบบใช้แปรงถ่าน
โดยนิยาม มอเตอร์แบบสับเปลี่ยนด้วยตนเองทั้งหมดทำงานด้วยไฟ DC ซึ่งต้องใช้แปรงถ่าน มอเตอร์ DC ส่วนใหญ่เป็นประเภทแม่เหล็กถาวรนาดเล็ก
มอเตอร์ DC แบบกระตุ้นด้วยไฟฟ้า
การทำงานของมอเตอร์ไฟฟ้าที่ใช้แปรงกับโรเตอร์สองขั้วและสเตเตอร์ที่เป็นแม่เหล็กถาวร (ขั้ว “N” หรือขั้ว “S” ที่บ่งไว้บนผิวหน้าด้านในของแม่เหล็ก ผิวหน้าด้านนอกเป็นขั้วตรงข้าม)
มอเตอร์ DC ที่มีตัวสับเปลี่ยนจะมีหนึ่งชุดของขดลวดที่พันรอบอเมเจอร์ที่ขี่อยู่บนเพลาโรเตอร์ เพลายังแบกตัวสับเปลี่ยนอยู่ด้วย ตัวสับเปลี่ยนจะทำตัวเป็นสวิตช์ไฟแบบหมุนที่ใช้งานได้นานปีในการเปลี่ยนทิศทางการไหลของกระแสตามช่วงเวลาที่ไหลในขดลวดของโรเตอร์ในขณะที่เพลาหมุน ดังนั้น ทุกๆมอเตอร์ DC ที่ใช้แปรงจะมีกระแส AC ไหลผ่านขดลวดที่กำลังหมุน กระแสจะไหลผ่านหนึ่งหรือมากกว่าหนึ่งคู่ของแปรงที่แตะอยู่กับตัวสับเปลี่ยน; แปรงเชื่อมต่อแหล่งจ่ายไฟภายนอกกับอเมเจอร์ที่กำลังหมุน
อเมเจอร์ที่กำลังหมุนประกอบด้วยหนึ่งหรือมากกว่าหนึ่งคอยล์ของขดลวดที่พันรอบแกนเหล็กอ่อนเคลือบฉนวน กระแสจากแปรงไหลผ่านตัวสับเปลี่ยนและขดลวดหนึ่งขดของอเมเจอร์ทำให้อเมเจอร์เป็นแม่เหล็กชั่วคราว (แม่เหล็กที่เกิดจากไฟฟ้า) สนามแม่เหล็กที่ผลิตโดยอเมเจอร์จะทำปฏิสัมพันธ์กับสนามแม่เหล็กอยู่กับที่ ที่ผลิตโดยแม่เหล็กถาวรหรือจากขดลวดสร้างสนามอื่นๆอย่างใดอย่างหนึ่ง แรงระหว่างสองสนามแม่เหล็กมีแนวโน้มที่จะหมุนเพลาของมอเตอร์ ตัวสับเปลี่ยนจะสลับกระแสไฟที่ให้กับคอยล์ในขณะที่โรเตอร์หมุน เป็นการรักษาขั้วแม่เหล็กของโรเตอร์ให้อยู่ในแนวที่สอดคล้องกับขั้วแม่เหล็กของสเตเตอร์ เพื่อให้โรเตอร์ไม่เคยหยุดนิ่ง (เช่นเข็มทิศที่ไม่หมุนไปทางอื่น) แต่ช่วยให้หมุนตราบเท่าที่พลังงานถูกจ่ายให้
มอเตอร์ DC แบบใช้ตัวสับเปลี่ยนแบบคลาสสิกมีหลายข้อจำกัด เนื่องมาจากความจำเป็นสำหรับแปรงที่ต้องกดกับตัวสับเปลี่ยน แรงกดนี้จะสร้างแรงเสียดทานและจะเกิดประกายไฟในขณะที่แปรงต่อวงจรและตัดวงจรกับคอยล์ของโรเตอร์ตอนที่แปรงเลื่อนผ่านรอยต่อที่เป็นฉนวนระหว่างเซ็กชั่นหนึ่งไปอีกเซ็กชั่นหนึ่ง หรือแปรงอาจไปช๊อตเซ็กชั่นที่อยู่ติดกัน นอกจากนี้ การเหนี่ยวนำของขดลวดโรเตอร์ทำให้เกิดแรงดันตกคร่อมในแต่ละขดเพิ่มขึ้นเมื่อวงจรของมันจะเปิดออก ซึ่งไปเพิ่มประกายไฟของแปรง ประกายไฟนี้จะจำกัดความเร็วสูงสุดของมอเตอร์ เนื่องจากประกายไฟที่เร็วมากเกินไปจะร้อนมากเกินไป, จะกัดกร่อน หรือแม้กระทั่งละลายตัวสับเปลี่ยน ความหนาแน่นของกระแสต่อหน่วยพื้นที่ของแปรง รวมทั้งค่าตวามต้านทานจะจำกัดเอาต์พุตของมอเตอร์ การต่อและการจากของหน้าสัมผ้สยังสร้างคลื่นรบกวน; ประกายไฟย้งสร้าง Radio Frequency Interference (RFI) ในที่สุด แปรงจะเสื่อมสภาพ และต้องเปลี่ยนและตัวสับเปลี่ยนเองก็เสื่อมสภาพได้และต้องการการบำรุงรักษา (สำหรับมอเตอร์ขนาดใหญ่) หรือเปลี่ยน (สำหรับมอเตอร์ขนาดเล็ก) ชุดใหญ่ของตัวสับเปลี่ยนของมอเตอร์ขนาดใหญ่เป็นชิ้นส่วนที่มีราคาแพงและต้องใช้ความแม่นยำในการประกอบหลายชิ้นส่วนเข้าด้วยกัน สำหรับมอเตอร์ขนาดเล็ก ปกติแล้วตัวสับเปลี่ยนจะประกอบมาเป็นส่วนหนึ่งของโรเตอร์ ดังนั้นถ้าต้องเปลี่ยนตัวสับเปลี่ยน ต้องเปลี่ยนโรเตอร์ทั้งตัว